Strong Convergence of a Verlet Integrator for the Semilinear Stochastic Wave Equation
نویسندگان
چکیده
The full discretization of the semilinear stochastic wave equation is considered. discontinuous Galerkin finite element method used in space and analyzed a semigroup framework, an explicit position Verlet scheme for temporal approximation. We study stability under CFL condition prove optimal strong convergence rates fully discrete scheme. Numerical experiments illustrate our theoretical results. Further, we analyze bound expected energy numerically show excellent agreement with exact solution.
منابع مشابه
Solutions of Semilinear Wave Equation via Stochastic Cascades
We introduce a probabilistic representation for solutions of quasilinear wave equation with analytic nonlinearities. We use stochastic cascades to prove existence and uniqueness of the solution.
متن کاملStrong Convergence of the Finite Element Method with Truncated Noise for Semilinear Parabolic Stochastic Equations
We consider a semilinear parabolic PDE driven by additive noise. The equation is discretized in space by a standard piecewise linear finite element method. We show that the orthogonal expansion of the finite-dimensional Wiener process, that appears in the discretized problem, can be truncated severely without losing the asymptotic order of the method, provided that the kernel of the covariance ...
متن کاملStrong order of convergence of a semidiscrete scheme for the stochastic Manakov equation
It is well accepted by physicists that the Manakov PMD equation is a good model to describe the evolution of nonlinear electric elds in optical bers with randomly varying birefringence. In the regime of the di usion approximation theory, an e ective asymptotic dynamics has recently been obtained to describe this evolution. This equation is called the stochastic Manakov equation. In this article...
متن کاملThe Pointwise Estimates of Solutions for Semilinear Dissipative Wave Equation
In this paper we focus on the global-in-time existence and the pointwise estimates of solutions to the Cauchy problem for the semilinear dissipative wave equation in multi-dimensions. By using the method of Green function combined with the energy estimates, we obtain the pointwise estimates of the solution. keywords: semilinear dissipative wave equation, pointwise estimates, Green function. MSC...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2021
ISSN: ['0036-1429', '1095-7170']
DOI: https://doi.org/10.1137/20m1364746